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Analytical function theory approach to the heat transfer problem
of a cylinder in cross-flow at small Péclet numbers
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Abstract

The theory of analytical functions is used to study the heat transfer from a uniformly heated cylinder with large length to diameter
ratio in cross-flow, in the limit of small Péclet numbers. The energy conservation equation is solved in Fourier’s space, and inverted by
means of the residue theorem to obtain an analytical expression of the average Nusselt number in closed form. The result agrees with
other theoretical solutions of the same problem existing in the literature.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer between a cylinder and a fluid stream in
cross-flow is relevant in several practical applications.
Examples are tube bundles in heat exchangers, but also
hot-wire anemometers, submarine pipelines, electric and
telecommunication cables, and many others. The heat
transfer process is greatly affected by the quite complex
hydrodynamic problem arising from the interaction
between the cylinder and the flow, with the development
of a boundary layer on the surface facing the flow and its
subsequent separation in the rear part of the cylinder [1].
As it is well known, this leads to a non-uniform heat trans-
fer coefficient [2], which is strongly influenced by the nature
of boundary layer development.

From the standpoint of engineering calculations one is
more interested in overall average conditions, so that the
average heat transfer coefficient on the cylinder surface is
required. The overall heat transfer coefficient is usually cal-
culated by means of empirical correlations, which express
the average Nusselt number as a function of the Reynolds
and the Prandtl numbers of the fluid flow [3], and can be
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used in a given range of flow conditions. Unfortunately,
uncertainties associated with the measurement of fluid
velocities, the estimation of boundary effects at the cylinder
ends, and the averaging of surface temperature, which var-
ies both circumferentially and axially, render the experi-
mental results accurate no better than 20–30%. As a
consequence, calculations relying on empirical correlations
are within the experimental uncertainty of the measure-
ments on which they are based.

A case of special relevance in applications is that of uni-
formly heated cylinders with a large length to diameter
ratio: examples are, among others, hot-wire anemometers
and accidentally burning wires or cables. Following the
pioneering work of King [4], this problem received much
attention by researchers from the experimental, the theo-
retical and, more recently, the computational point of view.

Experimental studies generally show a large scatter of
measured data, both at high values of the Reynolds num-
ber [4–7] and at smaller ones [8–10]. This is often a conse-
quence of limitations in measurement accuracy, of the
inappropriate treatment of the variation of fluid properties
with temperature, of slip effects due to the small size of
wires and, in the range of very small Reynolds numbers
(Re < 0.1), it is also a consequence of the effects of natural
convection. Thus, analytical and numerical approaches are
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Nomenclature

cp specific heat at constant pressure, J kg�1K�1

g gravity acceleration, m s�2

h convection heat transfer coefficient, W m�2 K�1

k thermal conductivity, W m�1 K�1

K0 modified Bessel function of second kind
L length, m
Nu Nusselt’s number ðNuL ¼ hL

k Þ
P pressure, Pa
Pe Péclet’s number ðPeL ¼ qucpL

k Þ
Pr Prandtl’s number ðPr ¼ cpg

k Þ
R cylinder radius, m
t time, s
T 0 temperature, K
T dimensionless temperature
u fluid stream velocity, m s�1

w dimensionless heat rate
W heat rate per unit length, W m�1

x dimensionless spatial coordinate parallel to the
flow

X spatial coordinate parallel to the flow, m
y dimensionless spatial coordinate perpendicular

to the flow

Y spatial coordinate perpendicular to the flow, m
z complex variable
Z spatial coordinate parallel to the wire, m

Greek symbols

C Euler’s constant
d(•) delta function
g viscosity, Pa s
k transformed dimensionless spatial variable in

Fourier space
q density, kg m�3

h Fourier transform of the dimensionless temper-
ature

x transformed dimensionless spatial variable in
Fourier space

f real variable

Subscripts
1 asymptotic conditions of the fluid stream
f film
w wall
R referred to the cylinder radius
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very useful, because they allow isolating the various effects
and investigating them separately.

In particular, theoretical works addressed at first the
solution of the flow field around the cylinder at small Rey-
nolds numbers [11,12], which provided the starting point to
solve the heat transfer problem [13–16]. These works
showed that for small Péclet numbers, when diffusion dom-
inates over advection, the details of the near-field become
irrelevant and heat transfer depends on the characteristics
of the far-field. Extensive and detailed reviews on the sub-
ject can be found in the recent literature [17,18].

Here, an approach based on the theory of analytical func-
tions is proposed to obtain a mathematical solution in
closed form for the heat transfer coefficient of a cylinder in
cross-flow in the range 0 < Pe < 1. The result is completely
equivalent to other well-known theoretical solutions of the
same problem that can be found in the open literature.

2. Analysis

Let’s consider a linear heat source, such as a heated
wire, placed in a gas stream uniformly flowing in the X-
direction, perpendicular to the source, with constant veloc-
ity, u. The heat source is characterized by a linear heat
emission density W (heat rate per unit length), and it is
assumed to be aligned with the Z-axis, so that all parame-
ters are Z-independent. Let’s assume that all processes are
steady and occur at constant pressure, and that the pres-
ence of the heat source does not perturb streamlines, which
remain parallel to the X-axis. This assumption is equivalent
to neglecting the near-field, which is a reasonable one for
small Péclet numbers.

The continuity equation allows one to write:

qu ¼ q1u1 ¼ const ð1Þ
where q1 and u1 are the asymptotic gas density and veloc-
ity. If the gas has constant thermophysical properties, the
energy equation reduces to:

q1cpu1
oT 0

oX
¼ kr2T 0 þ W dðX ÞdðY Þ ð2Þ

where cp is the specific heat at constant pressure, k is the
thermal conductivity coefficient, and d is the delta function.
The average heat transfer coefficient between the cylinder
and the gas stream, h, is given by the relation:

W ¼ 2phRðT w � T1Þ ð3Þ
where R is the radius of the wire, Tw is the temperature of
the wire surface, and T1 is the asymptotic temperature of
the gas.

The problem can be put into a dimensionless form by
introducing the following quantities:

x ¼ X
R
; y ¼ Y

R

T ¼ T 0 � T1
T w � T1

w ¼ W
kðT w � T1Þ

; NuR ¼
hR
k

PeR ¼
q1u1cpR

k
dðxÞ ¼ RdðX Þ; dðyÞ ¼ RdðY Þ

ð4Þ



Table 1
Values of the modified Bessel function of second kind K0(f)

f K0(f) Nu = 2/K0(f)

0.00 1 0
0.05 3.1142 0.6422
0.10 2.4271 0.8240
0.15 2.0300 0.9852
0.20 1.7527 1.1411
0.25 1.5415 1.2974
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Then, Eqs. (2) and (3) can be re-written as

oT
ox
¼ 1

PeR

½r2T þ wdðxÞdðyÞ� ð5Þ

w ¼ 2pNuR ð6Þ

Taking the Fourier transform of the energy equation one
obtains

ikhðk;xÞ ¼ � k2 þ x2

PeR

hðk;xÞ þ w
2pPeR

ð7Þ

where k and x are complex variables, and

hðk;xÞ ¼ 1

2p

Z þ1

�1
dx
Z þ1

�1
T ðx; yÞ expð�ikx� ixyÞdy ð8Þ

Eq. (7) yields

hðk;xÞ ¼ w

2pðk2 þ ikPeR þ x2Þ
ð9Þ

The temperature distribution in the physical space of
dimensionless coordinates x and y is obtained from Fourier
inversion of Eq. (9)

T ðx; yÞ ¼ w
4p2

Z þ1

�1
dx
Z þ1

�1

expðikxþ ixyÞ
k2 þ ikPeR þ x2

dk

¼ w
4p2

Z þ1

�1
expðixyÞdx

Z þ1

�1

expðikxÞ
k2 þ ikPeR þ x2

dk

ð10Þ

Eq. (10) can be integrated once over the k-variable by
means of the residue theorem [19]. In particular, since the
integrand function f(k) satisfies Jordan’s lemma, we have
that for x > 0Z þ1

�1

expðikxÞ
k2 þ ikPeR þ x2

dk ¼ 2pi
X

k

Resff ðzÞ; kkg ð11Þ

where kk are the poles of f(k) contained in the upper-half of
the complex plane, that is, Im(kk) > 0, and the residue is
given by

Resff ðzÞ; kkg ¼ ðz� kkÞf ðzÞjz¼kk
ð12Þ

Analogously, for x < 0 we have that

Z þ1

�1

expðikxÞ
k2 þ ikPeR þ x2

dk ¼ �2pi
X

k

Resff ðzÞ; kkg ð13Þ

where Im(kk) < 0. The function f(k) has two first-order
poles

k1;2 ¼ �i
PeR

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R

4
þ x2

s0
@

1
A ð14Þ

These poles are purely imaginary, and lay in the lower-
and upper-half of the complex plane, respectively, so that
Eqs. (10), (11) and (13) yield
T ðx; yÞ ¼

w
4p

Rþ1
�1 expðixyÞ

exp x
PeR

2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R
4 þx2

q� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R
4 þx2

q dx x > 0

w
4p

Rþ1
�1 expðixyÞ

exp x
PeR

2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R
4 þx2

q� �� �
ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R
4 þx2

q dx x < 0

8>>>>>>>>><
>>>>>>>>>:

ð15Þ
For x = 0, the temperature can be expressed as

T ð0; yÞ ¼ w
4p

Z þ1

�1

expðixyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R

4
þ x2

q dx ð16Þ

Since on the wire surface we have that T(0, ± 1) = 1, Eq.
(16) can be written as

2p
w
¼
Z þ1

0

cosðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

R

4
þ x2

q dx ð17Þ

Integrating the right hand side of Eq. (17) yields a mod-
ified Bessel function of second kind [20], so that

2p
w
¼ K0

PeR

2

� �
ð18Þ

According to Eqs. (18) and (4), one finds the expression
of NuR

NuR ¼
1

K0
PeR

2

� � ð19Þ

Referring Nusselt’s and Péclet’s dimensionless groups to
the cylinder diameter, as it is standard practice in the liter-
ature, Eq. (19) can be re-written as

Nu ¼ 2

K0
Pe
4

� � ð20Þ

Values of the function K0(f) and of the corresponding
Nusselt number are reported in Table 1.

3. Discussion

The validity of Eq. (20) is not generalized, but is obvi-
ously related to the assumptions made during its deriva-
tion. In particular, we have that:



Fig. 1. Comparison of the proposed solution for the Nusselt number (Eq.
(20)) with the solutions of Cole–Roshko (Eq. (21)) and Nakai–Okazaki
(Eq. (22)).

Fig. 2. Comparison between the proposed formula (Eq. (20)) and
Hilpert’s correlation (Eq. (23)), for different values of the Reynolds
number.
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1. The problem was treated in two dimensions, with no
boundary effects considered at the two ends of the cylin-
der. Thus, the cylinder aspect ratio L/R cannot be too
small (L/R� 10).

2. The thermophysical properties of the fluid are assumed
to be uniform in space, whereas the fluid temperature
is a function of the spatial coordinates. To account for
the differences due to the temperature gradient, the fluid
properties should be evaluated at the so-called mean film
temperature Tf = (Tw + T1)/2.

3. As mentioned above, assuming that streamlines are par-
allel to the X-axis, therefore neglecting their deforma-
tion in the vicinity of the cylinder surface, means that
diffusion is the dominating mass transport mechanism
in the flow around the cylinder: thus, the validity of
the present approach is limited to small values of
Péclet’s number (0 < Pe < 1).

An assessment of Eq. (20) can be obtained from the
comparison with some theoretical solutions of the heat
transfer problem at small Reynolds numbers existing in
the open literature. Cole and Roshko [13] applied the
Oseen–Lamb solution for the flow [11,12] to the thermal
energy equation (i.e., they linearized the inertia term of
the flow equations at infinity), for small temperature differ-
ences (constant fluid properties). They found the first term
of an expansion series in [ln(Pe)]�1 for the Nusselt number

Nu ¼ 2

ln 8
Pe

� �
� C

ð21Þ

where C � 0.5772 is the Euler constant. Later, Nakai and
Okazaki [16] matched two solutions for the temperature
field, one corresponding to pure conduction in the vicinity
of the cylinder and the other to a similarity solution for
convection in the far field. They obtained the following
expression:

Nu ¼ 2
2
3
þ ln 8

3

� �
� lnðPeÞ

ð22Þ

In the proposed approach, the flow field in the vicinity of
the cylinder is deliberately neglected, because its contribu-
tion vanishes in the limit Pe! 0. This allows one to obtain
a solution in closed analytical form (Eq. (20)), instead of
truncated solutions. Fig. 1 shows that in spite of that
approximation Eq. (20) is in very good agreement with both
of these analytical solutions, and in practice cannot be dis-
tinguished from the Cole–Roshko solution for Pe < 0.5.

As expected, all solutions converge to a same value for
Pe! 0, because in this case any differences in modelling
the flow field become irrelevant. When the Péclet number
grows, the solutions shown in Fig. 1 diverge, as the flow
field is taken into account to different degrees of
approximation.

It is also of interest the comparison of Eq. (20) with
some empirical correlations for cylinders in cross-flow.
Here, we consider the well-known correlation proposed
by Hilpert [5]:
Nu ¼ CRemPr1=3 ¼ CPe1=3Ren ð23Þ
where the values of C and m (or C and n) depend on the
Reynolds number, and the fluid properties are evaluated
at the film temperature Tf. Fig. 2 shows that, in the range
0 < Pe < 1, the proposed correlation exhibits a similar
trend as long as the flow is laminar (Re < 2000).
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4. Conclusions

The heat transfer problem between a uniformly heated
cylinder with large length to diameter ratio and a fluid
stream in cross-flow has been solved, in the limit of small
Péclet numbers (0 < Pe < 1), using the theory of analytical
functions. This approach allows one to obtain an exact
solution of the problem in a closed analytical form, which
returns the average Nusselt number as a monotonically
growing function of Péclet’s number.

The proposed solution is in very good agreement with
other theoretical solutions of the same problem existing
in the literature, which are based on the analysis of the flow
field around the cylinder. Moreover, in the range of Péclet
numbers considered, the present result exhibits the same
trend as some well-known empirical correlations for the
heat transfer coefficient of cylinders in cross-flow.
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